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Abstract 
In  this  paper, we present novel parallel  architectures based  on Quantum-dot Cellular 

Automata  (QCA)  hardware. We show that  the  QCA, by allowing co-planar  line  crossing, 
overcomes a major  limitation of VLSI and,  in  this sense, it  can  potentially  open  a  new  direc- 
tion  in the design of parallel  algorithms  and  architectures. In  addition,  the QCA is inherently 
suitable  for  pipeline  and  systolic  computation.  Exploiting  these two unique  features of QCA 
and as representative  applications, we present  systolic  architectures for co-planar  imple- 
mentation of complex permutation  matrices  and  computation of FFT by using  QCA-based 
hardware. 

1 Introduction 
VLSI technology  has made possible the integration of massive  number of components (pro- 
cessors,  memory, etc.)  into  a single  chip.  In VLSI design,  memory  and processing  power 
are relatively  cheap and  the  main emphasis of the design is on reducing the overall  intercon- 
nection  complexity  since data routing  costs  dominate  the power,  time, and  area  required to 
implement  a computation.  Communication is costly  because wires occupy the most  space  on 
a  circuit and  it  can also  degrade clock time [l]. In  fact,  much of the complexity (and hence 
the  cost) of VLSI design results from  minimization of data routing. The main  difficulty  in 
VLSI routing is due  to  the  fact  that crossing of the lines  carrying data,  instruction,  control, 
etc. is not  possible  in a plane.  Thus,  in  order to meet  this  constraint,  the VLSI design aims 
at keeping the  architecture highly  regular  with  local  and  short  interconnection. 

Systolic arrays [1,2] are  perhaps  the best  representative  example of strengths  and  limita- 
tions of VLSL In  fact,  systolic  arrays were originally  devised as a novel paradigm for massively 
parallel computation  to  take  advantage of and conform to  the features of VLSI. Systolic ar- 
rays  exploit  massive  parallelism  in the  computation by integrating a large  number of simple 
processor elements  interconnected  with  simple,  recursive,  and  regular  pattern. However, 
due  to  the  inherent  limitation of VLSI,  many  applications of interest  are  not  amenable to 
systolic  processing. There  are two types of algorithms:  the local communication type  and 
the global communication type [l]. A large class of algorithms for signal/image  processing, 
matrix  operations,  etc., belong to  the class of local  communication  type.  These  algorithms 
can he classified based on  their planar  graph, that, is, their  graph  can  be  mapped  to  another 
topologically  equivalent, graph  with no C ~ ~ S S O ' U ~ T  of wires. As a result,, they require  only 
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loc~~1 itlt,crconncc:t~ion het,ween t,he el en lent,^ of  the  comp~t~ing array. Stlch algorithms  are 
highly sllit,able for syst,olic processing and  consequently various systolic arrays have been 
proposed for their  implementation [1,3]. However, a very important class of algorithms,  the 
so called Fast, Transforms  including FFT, Hartley  and Cosine Transforms,  etc.,  are  of global 
communication  type, that is,  they  require  global  interconnection  between  the  elements of 
the  computing  array  and hence they  cannot  be  mapped  to  another topologically  equivalent 
graph  with  no crossover. Consequently, there  has  not been any proposal  for  systolic  compu- 
tation of this class of problems. In  fact,  this class of problem is considered as not  suitable 
for systolic  processing [ 1,3]. 

I t  should be emphasized  that  the  main  obstacle in a  systolic  (and  highly  parallel)  compu- 
tation of this class of problems  is  the need for  complex  data  permutations  that  arise in their 
implementation. In  fact,  the so called-Fast  Transforms achieve their efficiency by exploiting 
the  structure of their  underlying  operators  through the use of various permutation  matrices. 
In a sequential  implementation,  the  permutation  matrices  are  implemented in an implicit 
fashion, that is, their effect on a given vector is implemented by performing the correspond- 
ing permutation of the elements of the  vector.  Therefore, such an  implementation only 
involves data movement. However, even in a sequential environment and  depending on the 
underlying  complexity of a given permutation  matrix,  this  implementation  might  represent 
a significant part of the overall computation  time. A  salient  example is the so called  Bit- 
Reversal Permutation  that arises in FFT (see for. example [4]). In a parallel computation,  the 
implementation of permutation  matrices is considerably  more complex since the  elements of 
the  target vector are  distributed  among a set of processor/memory  modules.  And,  in  fact, 
depending  on  the  underlying complexity of a permutation  matrix  and  the  interconnection 
network among  the  processor/memory  modules,  the  parallel  implementation of the  data per- 
mutation may represent the most  intensive part of the overall parallel  computation. As a 
result,  the complexity of parallel implementation of various data  permutations  is a major 
obstacle  in  exploiting a high degree of parallelism  in computation of the Fast Transforms. 

There  has been significant  improvement in the performance  (size, power consumption, 
and  speed) of VLSI devices  in  recent  years and  this  trend may also continue for some near 
future. However, it is a well known  fact that  there  are  major obstacles,  i.e.,  physical limitation 
of feature size reduction  and ever increasing  cost of foundry, that would prevent the long 
term  continuation of this  trend.  This  has  motivated  the  exploration of some fundamentally 
new technologies that  are  not  dependent  on  the conventional feature size approach. Such 
technologies are  expected  to  enable scaling to continue to  the  ultimate level, Le., molecular 
and  atomistic size. In  particular,  quantum  dot-based  computing by using Quantum-dot 
Cellular  Automata (QCA) has recently  been  intensely  investigated [8-131 as a promising 
new technology capable of offering significant improvement over conventional VLSI in terms 
of reduction of feature size (and hence  increase  in  integration  level), reduction of power 
consumption,  and  increase of switching  speed. 

However, we strongly believe that  the main  advantage of QCA over VLSI is not  in  offering 
quantitative  (and  though significant,) improvement>  in  perfornlance, i.e.,  feature  size, integra- 
tion,  and power conslimption.  Rather, QCA offers a Ilniqle  capahility which overcomes the 
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major linlit,at,ion of VLSI. i.e.. t,he dab,  rollt,ing  corwtraint,. 111 fact., d11c t,o t,hcir cell~dar 
Ilat,lu-e, it is possible to cross QCA wires in a plane  (see 82). Sllch a capability t h n  allows 
compact, implementation of complex interconnection  networks in a plane by lwing QCA wires, 
which has  not been possible in VLSI.  In this  sense,  QCA  opens a new direction in designing 
novel and highly  parallel  algorithms and  architectures.  Note  that,  the  communication re- 
quirement  has been considered as the key factor in  evaluating  practical efficiency of parallel 
algorithms.  In  fact,  many known efficient (in  terms of computational  complexity) parallel 
algorithms  are  not  suitable for practical  implementation  on available  parallel architectures, 
due  to  their complex  communication  requirements.  In  parallel computing,  communication  is 
a key factor because  implementation of arbitrary  and complex  interconnection  among a large 
number of processors is either  impossible or very  expensive. QCA, by offering the possibility 
of implementing  compact  and  complex  interconnection  patterns,  can  potentially  provides a 
paradigm shift in  analysis and design of parallel  algorithms  and  architectures.  One  major 
requirement for (and to some  degree a limitation  of)  QCA is the need for an  appropriate 
clocking mechanism (see 52). However, this  requirement makes QCA  inherently  suitable for 
pipeline and systolic computation. 

In  this  paper, in order  to show the  potential of QCA for designing novel parallel  algorithms 
and  architectures, we propose a hybrid  VLSI/QCA  architecture for sys.tolic computation of 
FFT as a representative  application. We first. present  QCA  circuits for a direct hardware 
implementation of two fundamental  permutation  matrices:  the Perfect  Shuffle and  the Bit 
Reversal permutation  matrices which arise  in FFT and  many  other  signal  and  image pro- 
cessing applications [ 5 ] .  We then consider a reformulation of FFT and a hybrid  architecture 
for its systolic  implementation. The hybrid  architecture considered in  this  paper  consists of 
a set of VLSI and  QCA modules (chips).  The VLSI modules  contain a set of simple  bit-serial 
processing  elements  capable of performing  multiply  and  add  operations. The  QCA modules 
implement  the required  interconnection  between  processing  elements of VLSI modules. 

2 A Brief  Overview of Quantum-dot Cellular Automata 
In  this  section, we briefly review some pertinent  features of basic  functioning of and  computa- 
tion  with  QCA. More detailed  descriptions  can  be  found in [8-131. The basic computational 
element  in QCA is a quantum-dot cell (or molecule).  A QCA cell consists of four quantum 
dots  positioned at  the corner of a square  (Fig. 1). The cell contains two extra mobile elec- 
trons, which are allowed to tunnel  between  neighboring sites.  Tunneling out, of the cell is 
assumed to be  completely  suppressed by the  potential  barriers between cells. Indeed, if the 
barriers  between cells are sufficiently high,  the  electron will be well localized on  individual 
dots.  The  Coulomb repulsion between the  electrons will tend to make  them occupy antipodal 
sites in the  square. For an isolated  cell, there  are two energetically  equivalent arrangements 
of the  extra  electrons which are  denoted as cell state or polarization, P. The cell polariza- 
tion is used to encode  binary  information  (Fig. 1). The polarization of a non-isolated cell 
is determined based  on  interaction  with  neighboring cells. The  interaction between cells is 
Coulombic and provides the basis for compl1ting with  QCA. No a m e n t  flows bet,ween cells 
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m d  110 powcr or inforrnat,ion is delivered to inclividl tal interrlal cells. Local interconnection 
txtween cells are provided by the physics of cell-cell interaction [9]. Previous  reslllts have 
shown t,he feasibilit,y of fabricating  quant,um  dots  with single charges [6] and of making  large 
arrays of dot,s and  controlling  their  occupancy [7].  The design of universal logic gates  and 
binary wire using QCA is presented in [8-101 (see  Fig. 2). The first experimental demon- 
startion of a functioning  QCA cell is presented in 1111. Experimental  demonstrations of 
a functioning  QCA  binary wire and a majority  gate  are  presented  in [12,13]. More  inter- 
estingly, however, QCA offers a unique  capability which overcomes the  major  limitation of 
VLSI, i.e.,  the  data  routing  constraint.  In  fact,  due  to  their cellular nature  and Coulombic 
interaction,  it is possible to cross QCA wires in a plane  (Fig. 3 ) .  We exploit  such a capability 
of QCA (which is not possible in VLSI) for designing  compact and  complex  interconnection 
networks  in a plane. 

A QCA  array performs computation  through Coulombic interaction  among neighboring 
cells which causes them  to influence each  other's  polarization. The  computation in QCA 
array is edge driven, that is, both  energy  and  information flow in  from the edges of the  array 
only. This also  provides the  directionality  in  the  computation by the array. ' In  this sense, 
the difference between input  and  output cells is simply that  inputs  are fixed while outputs 
are free to change [9]. The QCA  array  then performs the desired computation by reacting 
to  the change  in the  boundary  conditions, i.e:, the  input  to  the  array.  The  fact  that  the 
computation in edge-driven implies that  no contact to interior cells are  made  directly  and 
thus  eliminating  the  interconnection  problem.  It also implies that  the paradigm involves 
computing  with  ground  state, that is, the  QCA  array  reacts  to  the  input  and  settles  to a 
new ground  sate which represents  solution of the desired computational problem for which 
the  array is specifically designed. However, computing  with  ground  state implies that  the 
computation is temperature sensitive. In  fact, if the  thermal  fluctuations excite the  array 
above  its  ground  state  then  the  array  can  produce wrong answer.  There  are two other 
major problems  with computing  with  ground  state.  First,  the  dynamics of the  array, Le., 
it,s  evolution to  the ground state, is hard  to  control [9]. Consequently,  the  settling  time 
to  the ground state  cannot  be controlled or predicted  and  it would vary  depending  on  the 
complexity of the array.  Second, the  array  might  settle  to a metastable state, producing 
wrong  result or leading to a significant delay  in  reaching to  the  true  ground  state. 

In  order  to overcome these  limitations of computing  with  ground state, an adiabatic 
switch,in,g scheme has  been  developed  [9]. In  this scheme, a QCA  array is divided into 
subarrays  and e-ach subarray is controlled by a different clock. The proposed clock in QCA 
is multi-phrased. This clocking scheme allows a given subarray  to  perform its computation, 
have its state frozen by raising of its  interdot  barriers,  and  then have its output as the  input  to 
the successor subarray.  Due  to  the  multi-phase  nature of this clocking scheme,  the successor 
subarray is kept in an  unpolarized  state so it  does  not influence the  calculation of preceding 
sllbarray.  Such a clocking scheme  implies a pipeline computation since different subarray  can 
perform  different  parts of computation. In other words, QCA arrays  are  inherently  suitable 
for pipeline and moreover systolic  computations.  Indeed,  the  architlectures presented in this 
paper exploit this  feature of QCA  to  enable a syst#olic implernent,at,ion of FFT. 
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3 QCA Circuits for Implementation of Perfect-Shuffle 
and  Bit-Reversal  Permutation  Matrices 

In  this  section, we present QCA  circuits for implementation of the perfect shuffle permu- 
tation  matrix, I I p ,  and  the Bit-Reversal permutation  matrix, Pp,  which arise  in Fourier 
transforms as well as many  other signal and image  processing applications [9]. These  circuits 
allow a co-planar (i.e., in a single layer),  compact,  and  direct  (i.e.,  hardwired)  implementa- 
tion of these permutation  matrices.  The  QCA  circuits in this  section  have  been  validated 
through extensive  simulation by considering  all  possible  combinations of the  input  vector. 
The simulations  are  performed by using  AQUINAS (A Quantum Interconnected Network 
Array  Simulator) which encapsulates  the physics of Hartree-Fock  model for simulation of 
QCA array  and is provided by the University of Notre  Dame. 

3.1 Perfect Shuffle Permutation  Matrix 
A  description of permutation  matrix I I 2 n  can  be given by describing its effect on a given 
vector. If 2 is an 2"-dimensional vector,  then  the vector Y = I IpZ  is obtained by splitting 2 
in half and  then shuffling the  top  and  bottom halves of the deck.  Alternatively, a description 
of the  matrix I I p ,  in terms of its elements II& (i ,  j ) ,  for i and j = 0, 1, . + . , 2" - 1, can  be 
given as 

I I p ( 2 , j )  = 1 if j = i / 2  and i is even, or if j = (i - l) /2  + 2"-' and i is odd 
0 otherwise (1) 

Figure  4 shows the  schematic  and  the designed QCA circuit for implementation of I&. 
The circuit in Fig.  4.b  has  been  validated  through extensive simulation by considering  all 
possible  combinations of the  input  vector. 

3.2 Bit-Reversal Permutation  Matrix 
A description of P2n can  be given by describing its effect on a given vector. If 2 is an n- 
dimensional  vector  and Y = P p Z ,  then Y,  = Z j ,  for i = 0,1, . . . ,2" - 1, wherein j is obtained 
by reversing the  bits in the  binary  representation of index i. Therefore, a description of the 
matrix Pn, in terms of its elements P2* ( i j ) ,  for i and j = 0,1, . . . ,2"  - 1, is given as 

{ if j is bit  reversal of i P2n(ij) = otherwise 

A  factorization of Pp in terms of I l 2 .  is given as [5] 

where 8 indicates  Kronecker Product.  Figure 5 shows the schemat,ic and  the designed QCA 
circllit for implementation of Ps. Again,  the circuit in Fig. 5.b has been valitlat,ed throllgh 
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extensive sinlnlat,ion by considering all possible combinations of the inpllt  vector.  Note. 
however, that  the  implementation of P2n. is significantly  more  complex than  that of n2n, due 
to its more complex permutation  pattern.  In  fact, we have  been  unable to  simulate a direct, 
implementation of even PI6 since its complexity has easily  overwhelmed the  capability of our 
currently available  simulation  tools.  An  alternative  technique to overcome such a limitation 
is to decompose  (factorize) the  permutation  matrix Pzn. Indeed,  Eq. (5) represents  such a 
factorization wherein P2n can be  implemented by using the circuits for implementation of 
the  same  and smaller size permutation  matrix n. However, we are  currently  investigating a 
more efficient technique by exploiting  the  structure of matrix P2n which has allowed us to 
design a series of simple  circuits for its implementation. 

4 A Hybrid VLSI/QCA Systolic Array for FFT 
The classical Cooley-Tukey Radix-2 FFT for a 2"-dimensional vector is a sparse  matrix 
factorization of DFT given by [SI 

and L = G. We have that F2 = W = Jz' ( -1 ) .  The  operator 

represents  the  computational kernel of Cooley-Tukey FFT while P2n represents the bit- 
reversal permutation which needs to  be performed on the elements of the  input vector  before 
feeding that vector into  the  computational kernel. 

The Cooley-Tukey FFT as given by (l), though  optimal for a sequential  computation, is 
not  suitable for a systolic implementation. A suitable  variant for systolic  implementation  is 
developed as foIlows. Using the  permutation  matrix n2i, the  matrices Bz. can  be reduced to 
a block diagonal  form as 

l l 2 1  BPillii = R2i or B2i = I l i i  R2i I l2 i  (7) 

where  t  indicates  transpose  and R2" is a block diagonaI matrix given by R2i = Diag{r(w$)), 

for j = () , I , .  . . 2"" - 1, with .(wit) = ( ":; ) . Using (4), the  matrices Ai given by 
75  1 -w2i 
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Substituting (7) and (8) into (l), we then get 

. . .  

A hybrid  VLSI/QCA  architecture for a systolic  implementation of (9) is shown in  Fig. (6). 
The  terms I I p ,  Si, and P p ,  which represent data  permutation  operators,  are  implemented 
by using QCA modules. The  terms Ki are  implemented by using VLSI modules  containing a 
set of simple  bit-serial  processing  elements.  Each  processing  element has two inputs  and two 
ouputs.  It  reads  data from its two inputs  and  produces two outputs by performing  simple 
multiply  and  add  operations. Aside being  driven by the  same clock, the. processing  elements 
are  totally  independent from  each other. Due. to  this  feature,  the processing  modules are 
highly suitable for a large-scale implementation.  with  CMOS  VLSI.  In  order to achieve the 
global  synchronization, the VLSI and  the  QCA modules are driven by the  same clock. 

5 Conclusion 
In  this  paper, we presented novel circuits for a compact,  co-planar,  and  direct  implementa- 
tion of two fundamental  permutation  matrices by using  QCA-based  hardware. Using these 
circuits, we then  presented a hybrid  VLSI/QCA  architecture for systolic  computation of 
FFT. The  architecture of this  paper underlines the  unique  advantage of QCA.  Although 
QCA offers significant quantitative  advantages over CMOS VLSI,  in terms of feature size 
(and hence integration level),  switching  speed,  and power consumption, we strongly belive 
that  the unique  advantage of QCA is the  capability of co-planar line crossing. This  capabil- 
ity  can  potentially overcome a major  limitation of VLSI, i.e.,  the  data  routing  constraint.  It 
can also opens a new direction in  designing massively parallel  algorithms  and  architectures. 
As it was shown for FFT, it  can  enable  the design of novel systolic arrays for applications 
which have previously  been  considered  not amenable to  a systolic  computation by VLSI. 

However, It  should  be  emphasized  that much more work remains to  be done  in devel- 
oping a more systematic  approach for the design of QCA-based  circuits.  Note that,  in  this 
paper  and for the  sake of proof of concept, we considered  bit-serial  circuits for computation 
and  communication.  The bit-serial  complltation fully exploits  the pipeline nature of QCA 
(through  deep  pipelining at, the  bit level). However, many  applications of interest,  might 
reqllire a bit-parallel  format,  resulting  in  more  complex  circuits which cannot  be  simulated 
and  analyzed by the  cllrrently available  simrdators. 
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Figure 1. Cell  Polarization  and  Binary  Information  Encoding 
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Figure 2. Binary  Wire  and  Cell-Cell  Interaction 
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Figure 5. Implementation of Permutation  Matrix  Ps 
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Figure 6. A Hybrid VLSVQCA Architecture 
for Systolic  Computation of FFT 


